

DATA SHEET Hall Effect Current Sensor

PN: CHB_LF15D

IPN=20-2000A

• Supply voltage: DC ±15~24V

Feature

- Closed- loop (compensated) current transducer
- Capable measurement of currents: DC, AC, pulse with galvanic isolation between primary circuit and secondary circuit.

Advantages

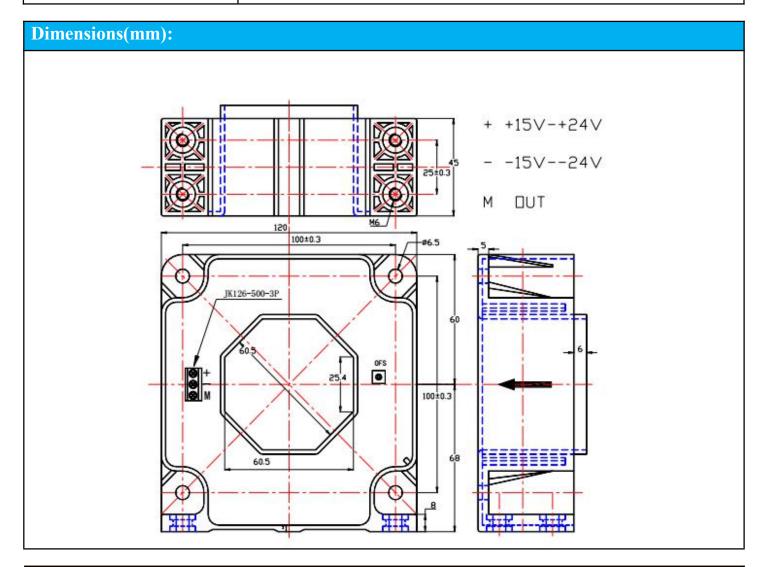
- High accuracy
- Easy installation
- Low temperature drift
- Optimized response time
- High immunity to external interference

Applications

- The application of variable frequency electrical appliances
- AC/DC variable-speed drive
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Inverter applications

- Very good linearity
- Can be customized

RoHS


Electrical data Ta=25°C Vc=±15VDC				
Ref Parmeter	CHB2000LF15D			
Rated input Ipn(A)	20-2000			
Measuring range Ip(A)	3000(±24V, 3.0Ω)			
Turns ratio Np/NS (T)	1:5000			
Output current rms IS(mA)	4 (20A)-400 (2000A) ±2%FS			
Secondary coil resistance RS (Ω)	@ 85°C 34			
Measure resister RM (Ω)	with±15V @±2000Amax 0(min) 1.0(max) with±24V @±2000Amax 0(min) 20(max) with±24V @±3000Amax 0(min) 3.0(max)			
Supply voltage VC(V)	(±15 ~ ±24) ±5%			
Offset current IOE(mA)	@IP=0 <±0.2			
Offset current drift (mA)	$-40 \sim +85^{\circ}\text{C}$ $\leq \pm 0.005$			
Accuracy XG(%)	@IPN,T=25°C <±0.1			
Linearity error $\varepsilon r(\%FS)$	< 0.1			
Di/dt accurately followed A/μs	> 100			

Cheemi Technology Co., Ltd

Response time tra(µs)	@90% of IPN	< 1.0	
Power consumption IC(mA)		20+Is	
Bandwidth BW(KHZ)	@ -3dB	DC150	
@ 50HZ, AC, 1min	@ 50HZ, AC, 1min	6	

General data			
Parameter	Value		
Operating temperature TA(°C)	- 40 ∼ +85		
Storage temperature TS(°C)	-40~ +125		
Mass M(g)	1820		
Plastic material	UL94- V0.		
	EN60947-1:2004		
C. 1 1	IEC60950-1:2001		
Standards	EN50178:1998		
	SJ 20790-2000		

Remarks

Cheemi Technology Co., Ltd

- 1. All dimensions are in mm.
- 2. General tolerance ± 1 mm.

Characteristics chart: Pulse current signal response characteristic Effects of impulse noise Output voltage

Directions for use

- When the current goes through the primary pin of a sensor, the voltage will be measured at the output end.
- > Is will be in a forward direction when the Ip flows according to the direction of arrowhead.
- Custom design is available for the different rated input current and the output voltage.
- The dynamic performance is the best when the primary hole if fully filled with.
- ➤ The primary conductor should be ≤ 120 °C.

WARNING: Incorrect wiring may cause damage to the sensor.

